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A METHOD OF FRACTIONAL STEPS 
FOR SCALAR CONSERVATION LAWS 

WITHOUT THE CFL CONDITION 

HELGE HOLDEN AND NILS HENRIK RISEBRO 

ABSTRACT. We present a numerical method for the n-dimensional initial value 
problem for the scalar conservation law u(xl. x, , t)I + Z7 f1(u)x = 0, 
u(x . x, , 0) = uo(x . xv) . Our method is based on the use of dimen- 
sional splitting and Dafermos's method to solve the one-dimensional equations. 
This method is unconditionally stable in the sense that the time step is not 
limited by the space discretization. Furthermore, we show that this method 
produces a subsequence which converges to the weak entropy solution as both 
the time and space discretization go to zero. Finally, two numerical examples 
are discussed. 

0. INTRODUCTION 

Scalar conservation laws, given their wide range of applications, have been 
studied extensively over the years, both from a mathematical, physical and nu- 
merical point of view. Fundamental problems are the emergence of discontin- 
uous solutions of the partial differential equation with the subsequent call for 
weak solutions, which again results in subtle uniqueness questions. Existence 
and uniqueness were first proved for the general Cauchy problem by Conway 
and Smoller [2], and later on by Kuznetsov [9], Vol'pert [10], Kruzkov [8] who 
used a viscosity method. We will here use Kruzkov's formulation of the entropy 
condition, which is a mechanism to identify the unique physical solution. 

We here study the Cauchy problem 

n 

(0.1) Ut + Zfi(u)xi = 0 

U(X1, ..., n,0) = uo(xl - Xn). 

Kruzkov's definition of the entropy weak solution reads as follows: u is the 
entropy weak solution if for all constants k, all q E Co', q > 0, the inequality 
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>0 | tlu - kl + sign(u -k) J( fi(u) -fi(k))Ox, dnxd t 
(0.2) lln tOi=l 

+J luo -kl?>(xl Xn, 0) dnx > O n 
holds. 

The method of fractional steps, or dimensional splitting, was introduced by 
Godunov [5] in connection with gas dynamics, and later modified and extended 
by various authors. 

Let us briefly describe the method of fractional steps, due to Godunov, for 
the case n = 2. Let u(x, y, t) = S(t)uo(x, y) denote the entropy solution of 

0 3) ut + POu)X + g(u)y = 0, 
)u(x, y,0) = uo(x, y) 

at time t. Similarly, let v(x, y, t) = Sf x(t)vo(x, y) denote the entropy solu- 
tion of 

Vt+ f(u)x = 0, 
V(X, y, 0) = VO(X, y) 

at time t, when y is considered a parameter. The idea is then to alternately ap- 
ply the operators Sf ,X and Sg' Y (defined as Sf ,X but with y as a parameter) 
for small time steps At to approximate u(x, y, t), viz., 

(0.5) u(x, y, t) = (S(t)uo)(x, y) [Sf x(At)Sg,y(At)]nU0(X,y) 

with nAt = t. 
When solving the one-dimensional problem (0.5), one may choose from a 

variety of methods available. Crandall and Majda [3] analyze rigorously the 
method of fractional steps for monotone schemes, the Glimm method, and the 
Lax-Wendroff scheme. 

We here propose another scheme which has the advantage of yielding an un- 
conditionally stable approximation in the sense that the time step is not limited 
by the space step used in the discretization; i.e., one does not need the Courant- 
Friedrichs-Lewy (CFL) condition. Our method is based on an idea by Dafermos 
[4] of approximating the flux function by a polygon, i.e., a continuous, piecewise 
linear function. Furthermore, the initial data are approximated by step func- 
tions, thereby yielding (multiple) Riemann problems. This has the advantage 
of replacing rarefaction waves by shocks in the solution, and thus the solution 
will be a step function in x for each t. Holden, Holden, and H0egh-Krohn 
[6], [7] developed this approach into a numerical method for n = 1 . 

We now give a brief summary of the paper. Let 3 > 0 denote the parameter 
measuring the polygonal approximation of the flux function in the sense of 
(1.2), and fix a grid in the x, y-plane. We then use the Dafermos scheme in 
the x-direction for a small time step At. The solution is then projected back 
onto the original grid before we apply the Dafermos scheme in the y-direction 
for a time step At, using the solution computed in the x-direction as initial 
data. Each time after we apply the Dafermos scheme, we project the function 
onto the original grid, thereby obtaining a sequence of functions indexed by the 
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number of iterations and the mesh size. In a series of lemmas we then prove 
that this sequence is uniformly bounded by the initial data in the L??-norm, 
the T.V.-norm, and has LI-norm which is Lipschitz continuous in the time 
variable. Helly's theorem then gives a convergent subsequence, which is finally 
proved to satify the Kruzkov entropy condition (0.2). In a last section we apply 
this method to two problems in two dimensions, one theoretical example and 
one example taken from petroleum reservoir simulation. 

1. CONSTRUCTION OF APPROXIMATE SOLUTIONS 

For simplicity of notation we will consider (0.1) in two dimensions, since gen- 
eralization to more than two dimensions is straightforward. In two dimensions, 
(0.1) reads 

ut + f(U)X + g(u)Y = 0, 

()u(x, y, 0) = uo(x, y), 

where f and g are continuous functions IR -* IR that are also in B J/cj(IR) n 
LI c(R). 

We wish to construct a numerical approximation of the solution u based 
on dimensional splitting, and where the one-dimensional solution operators are 
constructed by Dafermos's method [4]. We now give a brief description of 
Dafermos's method as used in [7] and as we will use it here. 

Let uo be some given real number and let ui = uo + id3, > 0, for i = 

1 ... ,N; let fi = f(ui). We then define f3(u) by 

(1.2) u E [Ui,5ui+I] = ff(u))= fi+ -fi(U-ui)?+ fi, N- I 
Ui+1 - Ui 

and 

(1.3) u < uo =r f(u) = uo u > UN =ar f(u)= UN. 

Consider the Riemann problem with ul = uo and Ur = UN. Let f, denote the 
lower convex envelope of fj on [ul, Ur]. Then also f, is piecewise linear and 
continuous. Let iio < i <. < UM be such that 

(1.4) f10=u0, UM=UN, {UO, .*., UMV C {UO, ..., UN}, 

and such that f, is linear on each interval [ii, aji+j . The solution of the one- 
dimensional Riemann problem with left state uo and right state UN iS now 
given by 

ul forx<sgot, 

(1.5) u(x,t) ui forSi-it<x?<St, i=l ... ,M-, 

Ur forx>>SMIt, 

where 

(1.6) i = 0, .. .,M- . 

There is a similar formula involving the upper convex envelope for the solution 
of the Riemann problem in the case where the left initial value is larger than the 
right. In particular, we see that the solution in each case is a step function in 
x/t. Dafermos's method as used in [7] and elsewhere involves approximating 
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the initial function by a step function and thereby defining a series of Riemann 
problems. The solutions of these will define a function which can be defined 
for t > 0 until two discontinuities interact. The interacting discontinuities 
will then define a Riemann problem. This Riemann problem is solved and the 
solution can be continued in this fashion up to any positive time. For a complete 
description of this procedure we refer the reader to [6], [7]. 

Let Ax and Ay be given (small) numbers, and let 7r be a projection from 
BV(R 2) to functions that are constant on each square 

(1.7) zij = {(x, y); iAx < x < (i + ? )Ax, jAy < y < (j + )Ay} 

for i, j E Z. The projection 7r is to satisfy 
lim 7(u(x, y) = u(x, y), 

Ax-O, Ay--O 

(1.8) JJ 17ru - ul dxdy = O(max(Ax, Ay)), 
r(i+ I)Ax r('+ )Ay r(i+ I)Ax (+ I)Ay 

(7ru)ijAxAy = 1 I 7zudxdy ] udxdy, 

where we write (7ru)ij for 7iul,, . Furthermore, the value of 7ru in zij should 
only depend on u in zij. In addition, the projection is required to satisfy 
min(X,Y)Ez1j 

u < (7ru)ij < max(X,Y)Ezj 
U. 

The canonical choice would be to let 7r denote the grid average, i.e., 

(1.9) 7ru(x, y) = u(ziY)-J dy (x, j)u(x,y), (x, y) ZEz, 
z1J 

for some measure ,u. Since we will use Dafermos's method in each direction, 
we define f; and g3 to be piecewise linear continuous approximations to f 
and g, respectively. The approximations should be good both in the T.V.-norm 
and in LI , i.e., 

lim If(u) - f3(u) IT.V = 0, 

(1.10) lim If(u)-f(u) IL =0 , 

and similarly for g. If vo(x) is a piecewise constant function taking a finite 
number of values, we can use Dafermos's method to calculate the solution to 
the initial value problem 

(1.1 1) Vt + f3(v)X = v v (x, 0) = VO(X). 

We will write v(x, t) = Sf X(t)vo(x) to indicate that v(x, t) is the weak 
entropy solution of (1.1 1). 

If, for each fixed x, u(x, y) is a piecewise constant function in y on the 
intervals (jAy, (j + I)Ay), j E Z, we write 

(1.12) Uj (x) = U IyAY<y<(j+1 )Ay (X, y). 

Similarly, 

(1.13) Ui(y) = U1iAx<x<(i+l)A(X, Y) 

for functions that are constant in x for each y. Furthermore, 

(1.14) u (x t) =Sf,X(t)uj(x), Ui(y, t) =Sf'Y(t)ui(y). 
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Dimensional splitting consists in first applying the solution operator sf X to Uj 
for each j, then projecting the solution back onto the grid, and subsequently 
applying the solution operator Sg 'y to ui for each i. Finally, the result of 
this is projected onto the grid, and the process is repeated. In "computer code", 
this looks as follows: 

t := 0 
n := 0 
u?(x, y) := 0 o uo(x, y) 
do while t < T 

do j := -N step 1 to N 
un+112(x) = Sf X(At)un(x, (j + 1/2)Ay) 

enddo 
un+l/2(X, y) :- 7( 0 Un+l/2(X, y) 

do i := -N step 1 to N 
un+1 (y) =Sg,Y(At)Un+112((i + 1/2)Ax, y) 

enddo 
Un+ 1 (X, y) := 1[ Un+ 1 (X, y) 

t:= t?+At 
n := n + 1 

enddo 

Here, N is a constant that is chosen so large that un is constant outside the 
square bounded by +NAx and ?NAy in the time interval [0, T]. 

2. CONVERGENCE 

For convenience we will from now on assume that Ax = Ay = cAt for some 
c :$ 0. We then have three main lemmas, which ensure the existence of a 
convergent subsequence. 

Lemma 1. There holds 

(2.1) IIun(x, y)11oo < ?Iuo(x, y)11.o 
Proof. This is true since Sf,X and S "Y do not introduce new maxima or 
minima, and neither does the projection ir. El 

Lemma 2. We have 

(2.2) T.V.(x,Y)(un(x, y)) < T.V.(x,y)(uo(x, y))- 
Proof. Recall that for a function h(x, y), the total variation T.V.(x,y)h(x, y) 
is defined as 

(2.3) T.V.(x,y)h(x, y) = JT.V.x(h(x, y))dy + J T.V.y(h(x, y))dx. 

The lemma will hold inductively if we show that 

T.V.(un+l (x, y)) < T.V.(un(x, y)). 

From [7] we know that if u and v are two weak solutions of 

(2.4) Ut + f(u)X = 0 

with initial values uo and vo, respectively, then 
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(2.5) ju - vldx < Jluo - voldx. 

We now have that un (x, At) and U> ,(x, At) are step functions that are 
constant on some intervals {[Xk, xk+1)}. Thus, if kk E [Xk, xk+ ), then 

J Iul?(x, At) - un(x, At)ldx 

(2. 6) = Z | N + I (Xk , At) -U (xk , At) I (xk+ I - Xk) 

< |Uinj+, - un jlAx, 
k 

using (2.5). But by the construction of the projection 7r, 

(2. 7) Z Iu1l k, Ant) - Un(Xk, At)I(xk+l - Xk) = Znj - 
1 /2 1AX. 

k i 

Therefore, 

(2. 8) E | Un+ 1/2 _Un+ 1/2 lx un -,|\ (2.8) Z IuJj'1 - u7 11Ax ? li u7,+ -u7,jlAx. 
I ~ ~ 1,jI + 

If again u is a weak solution of (2.4), then from [6] we have 

(2.9) T.V.x(u) < T.V.x(uo). 

From this it follows that 

(2.10) Z|Uin (k+ l, At)-u jn (k, At)J <?Iu jUn - j n. 
k i 

Now let h = h (x) E B V be any piecewise constant function, and let h, be a 
continuous approximation to h defined as follows. In a small neighborhood of 
each jump we let h, be a linear interpolation between the two constant values. 
Then T.V.(h) = T.V.(h,) > T.V.(7h), since 7rh is a particular partition of h, 
This implies 

(2.11) Z Iu7iQ -j -u~i1jU/2I2?n Z < IU n -j un,j. 
i i 

Multiplying (2.11) by Ay and summing over j, and summing (2.8) over j, 
and then adding the results, we obtain 

(2.12) T_V_(x,y)(un+1'2(x, y)) < T.V.(x y)(un(X, y)). 

The desired result now follows by applying S9 'Y. 0 

Lemma 3. There holds 
(2.13) ZIuj _-un,jlAxAy = (CAt + h(Ax, Ay, u)) (m-n), 

i,j 

where h is such that limAxO ,Ayo h(Ax, Ay, u) = 0. 
Proof. If we again turn to the one-dimensional equation and let u be the solu- 
tion of (2.4), then 

(2.14) JIu(x, t2) - u(x, tl)ldx < C(t2 - tl) 
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for some constant C. In our notation this reads 

(2.15) j |Uj/2 (.k+X At) - u0(Xk)I(xk+I - Xk) < CAt, 
k 

where the intervals {[Xk, Xk+ 1) } are chosen such that both uV (x, At) and 
uV(x) are constant on [Xk, Xk+1) and Xk E [Xk, Xk+1). Now 

(U1 +1J - Uijj < ?Un| 1 _ U (X, At)I + |U (X, At) _ Un1/121 

+ - 
n+112 Un+112(X, At)I + Un112 (x, At) - u7jl, 

for iAx < x < (i + I)Ax. Integrating (2.16) in both the x- and y-direction 
and using (2.15) gives 

(2.17) ZIu71- _u7j,AxAy< 4NCAt+ 17rv-vldxdy+JJ rw-wldxdy, 
I ,J 

where 

w(x, y) = U:n(X, At), 
(2.18) v(x, y) = un+112(x, At), 

and N is such that ui is constant outside the square bounded by +NAx and 
?NAy. By virtue of (1.8), the last two terms on the right-hand side of (2.17) 
will be of order O(Ax) = O(At) as Ax and Ay tend to zero. The lemma now 
follows by induction. El 

Denote un(x, y) by un(x, y), where n = (3, Ax). Now by using Lemmas 
1-3 and Helly's theorem as, e.g., in [2], one shows the existence of a conver- 
gent subsequence of un (which we for simplicity will again call un(x, y, t)). 
Furthermore, this sequence converges uniformly in L1(R23 x [0, T]) for any 
T > 0, and the limit takes the correct initial value. We will denote this limit 
by u(x, y, t). 

Lemma 4. The limit u(x, y, t) is a weak entropy solution of(2.1). 
Proof. We always have that un (x, At) is a weak entropy solution of the problem 

(2.19) Ut + f(U)x = 0, u(x, nAt) = u7(x). 

Therefore, 

R(n+ +1)At 

j j Q~tlUjn(x, t) -kl 
11 At 

+ oxsign(Nyn(x S t) -k)( f(un (x, t)) - f5(k)) d t dx 
(2.20) - jq0(x, (n + I)At)lun(x, At) - kldx 

+ j q(x, nAt)lun(x) - kldx > 0 

for any constant k . Since u0 (x, t) is a step function in x, the integration with 

respect to x can be approximated by a Riemann sum of un+1/2. Therefore, 
i,]j 
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for any small e > 0 we may find a corresponding n such that 

fJ q(iAX, jAy, t)tlunt/ -2kI 
JAt [ 

(2.2 1 ) ?}+oi,j,(t)xsign(u7n+j/ - 
- f(k))AxI d t 

- Z n+$1 Iun+1/2 - kIAx + S n 7jjU7,in j- klAx >-C, 

where fin= f(u71 j) and 0in j = 0(iAx, jAy, nAt). Here we have used (1.8) 

when replacing un(x, At) by Ujn+1/2 and fj(u7(x, At)) by f(un112). Further- 
more, we can approximate differentiation with respect to t by a difference, and 
integration with respect to t by a multiplication with At. Thus, for any C1 > 0 
we can find j such that 

z { q$i, j I,j Iun+1/2 - k 

(2.22) + ($n+j1 )xsign( Un+1/2 -k)(ny+112 _ f(k))} AxAt 

- sE q$ln+1 Un+1/2 
- kIAx + 5 jin j - klAx > -Cl. Oi j -ki i 

Similarly, we get 

E { ' 7~jl- q$ i. Iu+j1/2 - kI 

(2.23) + (qn+lj)ysign( un+jl2 - k) (g[+l2 - g(k))} AyAt 

_ - n+ 
l Iun+ _klAy + Z n,ujun+1/2 - klAy > -2 

Ii i 

for any C2 > 0 and for some sufficiently small ,j. Multiplying (2.22) by Ay 
and adding for all j, and multiplying (2.23) by Ax and adding for all i, and 
finally adding the results, we get 

I { j -I,j < Un+1/2 - kl + sign(un+1/2-k) 

(2.24) X ((q)i ' j)X (i j 
- f(k)) + (q i+j1) (g[+jl/2 

- (k))) At 

_7sn+l un+l klAxA 

i,J 

+ 5i j |jUn j -klAx/y > -L(Cei + C2) = -LC, 
i,i 

where L = NAx = NAy, and N is such that supp(q) C {IxI < N/2, IYI < 
N/2} x [0, T]. Summing (2.24) over n and letting i -O 0, we get that u is 
an entropy weak solution of (2.1). 0 
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The generalization of this to higher dimensions is straightforward. We define 

(2.25) G, (t) = 
7rSfn, Xn .7.t.Sf1, 

xl 

and let I denote the 'grid spacing', i.e., q = (3, Ax1, ..., Ax,, At). The 
approximate solution is denoted 

(2.26) U,(xi, ... , xn, mAt) = (G3(At))m uo(xi, ... , xn). 
Theorem. Let fi, ... , fn be continuous functions that are in B VJoc(R) nLI cL(R). 
Define by (2.26) a sequence of approximate solutions of (0. 1) indexed by q . As 
q - 0, a subsequence of u?, converges to the unique entropy weak solution (0.2) 
of (O.1). 

3. Two NUMERICAL EXAMPLES 

In this section we will present two numerical examples where the method of 
fractional steps has been applied. The first is a theoretical example, while the 
second is taken from petroleum reservoir simulation. 

In the first example we study the equation 

Ut + (u2)x + cos(27ru)y = 0, 

(3.1) ( -1 if I(x, y) - (0.4, 0.4)1 < 0.5, 
uo(x, y) = 1 if l(x, y) - (-0.4, -0.4)1 < 0.5, 

10 otherwise. 
We have used Ax = Ay = .05 and At = 0.10, which corresponds to a CFL 
number of 4 in the x-direction and 2 in the y-direction. We have used 11 
piecewise linear segments to approximate the flux functions. As the measure ,u 
we have here used simple Lebesgue measure, and the projection ir from (1.9) 
is therefore simply the grid cell average. In Figures 3.1-3.4 (see next page) we 
show the solution at times t = 0, t = 0.1, t = 0.2 and t = 0.3, respectively. 
The different values are shown on a gray scale such that black corresponds to 
-1 and white corresponds to 1 . The labels on the axes denote grid blocks, 
the lower left-hand corner has coordinates (-1, - 1) and the upper right-hand 
corner (1, 1). 

The next example is taken from petroleum reservoir simulation. It is a study 
of water injection into a homogeneous horizontal oil field. We use a two-phase 
black oil model, neglecting capillary pressure, and assume that the two phases 
present, water and oil, are incompressible. The reservoir is then described by 
two coupled differential equations called 'pressure equation' and 'saturation 
equation', respectively. The pressure equation reads 

(3.2) V((AO(s) + Aw (s))VP) = 0. 

Here, the unknowns are the pressure P, the fraction of the available pore vol- 
ume occupied by water, and the water saturation s . The relative permeabilities 
AO (s) and Aw (s) are assumed to be known functions of the saturation. By using 
the so-called Darcy's law, one obtains the saturation equation 

(3.3) st + VF(s) = 0, 
where 

(3.4) F(s) A= (s) VP 
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The equations (3.2) and (3.3) are solved using an IMPES method, i.e., first (3.2) 
is solved with the initial saturation distribution, then (3.3) is solved in some 
time interval [to, tl], assuming that the pressure is constant in this interval. 
Now we again solve (3.2), given the result from (3.3). This process is then 
repeated. The IMPES method is common, and is usually justified by the large 
difference in the characteristic times in (3.2) and (3.3). The numerical method 
used to solve (3.3) is a finite element method using the same grid system as the 
method of fractional steps which is used to solve (3.4). Here the projection 7f is 
much more sophisticated than in the theoretical example. The algorithm for 7r 
'tries to discover' where the solution is smooth and where it is discontinuous. In 
places where it finds discontinuities it tries to represent these as well as possible. 
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For further details of the fractional steps algorithm applied to flow in porous 
media the reader is referred to [11. 

In the example we use five injection wells and initially ten production wells. A 
production well is automatically shut off after water breakthrough, i.e., after the 
saturation surrounding it has reached some predefined level. In Figure 3.5 we 
show the saturation of water at four different times, all active wells are marked 
by squares, for injection wells the squares are black while production wells are 
white. The water saturation is represented by a gray scale, black corresponds to 
a saturation of 1.0 and white to a saturation of 0.25 . The numerical grid size 
used here is 50 x 50, and we used ten linear segments in the approximation to 
the flux function. 
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